pseudomallei DD503 BoaB These animal studies were performed in c

pseudomallei DD503 BoaB. These animal studies were performed in compliance with institutional, as well as governmental, rules and regulations. Immunofluorescence labeling of E. coli and microscopy Plate-grown bacteria were suspended in

5-ml of sterile PBSG to a density of 108 CFU/ml. Portions of these suspensions were spotted onto glass slides and dried using a warming plate. The slides were fixed with PBSG supplemented with 4% paraformaldehyde for 30-min at room temperature, washed with PBS supplemented selleck products with 0.05% Tween 20 (PBST), and blocked overnight at 4°C using PBST supplemented with 10% goat serum (SIGMA-ALDRICH®). Next, bacteria were probed for 1-hr at room temperature with murine α-BoaA or α-BoaB antibodies diluted (1:200) in PBST supplemented with 10% goat serum. After this incubation, the slides were washed with PBST to remove unbound antibodies and incubated for 30-min at room temperature with a goat α-mouse antibody labeled with Alexa Fluor® 546 (Molecular Probes, Inc) and diluted (1:400) in PBST supplemented with 10% goat serum. Following this incubation, the slides were washed with PBST to remove unbound antibody and bacterial cells were stained using

the nucleic acid dye DAPI (Molecular Probes, Inc). Slides were mounted with SlowFade® reagent (Invitrogen™) and examined by microscopy using a Zeiss LSM 510 Meta confocal system. Acknowledgements This study was supported by a grant from NIH/NIAID (AI062775) and startup funds from the University of Georgia College of Veterinary Medicine to ERL. The authors would LEE011 chemical structure like to thank Lauren Snipes and Frank Michel at the University of Georgia for their technical assistance. References 1. Cheng AC, Currie BJ: Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 2005,18(2):383–416.PubMedCrossRef 2. Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ: Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 2006,4(4):272–282.PubMedCrossRef

3. Currie BJ, Fisher DA, Anstey NM, Jacups SP: Melioidosis: acute and chronic disease, relapse and re-activation. Selleck Abiraterone Trans R Soc Trop Med Hyg 2000,94(3):301–304.PubMedCrossRef 4. Currie BJ, Fisher DA, Howard DM, Burrow JN, Lo D, Selva-Nayagam S, Anstey NM, Huffam SE, Stem Cells inhibitor Snelling PL, Marks PJ, Stephens DP, Lum GD, Jacups SP, Krause VL: Endemic melioidosis in tropical northern Australia: a 10-year prospective study and review of the literature. Clin Infect Dis 2000,31(4):981–986.PubMedCrossRef 5. Adler NR, Govan B, Cullinane M, Harper M, Adler B, Boyce JD: The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol Rev 2009,33(6):1079–1099.PubMedCrossRef 6. Wiersinga WJ, van der Poll T: Immunity to Burkholderia pseudomallei. Curr Opin Infect Dis 2009,22(2):102–108.PubMedCrossRef 7. Vietri NJ, Deshazer D: Melioidosis. In Medical Aspects of Biological Warfare. U.

Comments are closed.