Among the resistance switching materials, ZnO is especially attractive for its several unique advantages, such as the coexistence of unipolar and bipolar switching behaviour [14, 15], the larger high resistance state to low resistance state (HRS/LRS) window [16] and the transparent and flexible application aspects [6, 17]. The doping method has already been adopted to optimize the switching performance of ZnO, including Mn, Co, Cu and Ga [15, 16, 18–20], but the switching properties were not as optimized as for practical applications. Very few studies of the electric conduction mechanism for Ti-doped AZ 628 purchase ZnO films have been reported [21–23]. Since the ionic radius
of titanium is smaller than that of the zinc, when titanium atoms doped into a ZnO lattice, they act as scattering centres/donors by providing two free electrons. However, only a small amount of doped Ti4+ could induce more electrons and avoid acting scattering centres [24]. Also, Ti-doped ZnO films have more than one charge valence state in comparison to that of the ZnO films
doped with other Group III elements. The Ti precursor in aqueous solution controls the hydrolysis process of Ti ions, and this reaction is very fast in conventional precursors, such as TiCl4. The coordination number of Ti is six; therefore, ammonium hexafluorotitanate is more stable, and thus, SBI-0206965 clinical trial it is suitable to use as a dopant. In this present work, we find that ammonium hexafluorotitanate is the most suitable compound for Ti doping and for controlled structural morphology. In this paper, a study has been carried out on resistance switching properties of Ti-doped ZnO, where the films were prepared
by a simple electrochemical deposition Calpain method at low temperature. Ti dopants were introduced into ZnO in order to enlarge the memory window via increasing the resistivity of the high-resistance state. Methods Electrodeposition was carried out using an Autolab 302 N electrochemical workstation (Metrohm, Utrecht, The Netherlands). A standard three-electrode setup in an undivided cell was used. ITO (indium tin oxide) (9.3 to 9.7 Ω, 1.1 mm × 26 mm × 30 mm, Asashi Glass Corporation, Japan) was used as the working electrode while platinum foil (0.2 mm × 10 mm × 20 mm) as the counter electrode. The distance between the two electrodes was 30 mm. The reference electrode was an Ag/AgCl electrode in a 4-M KCl solution, against which all the potentials reported herein were measured. The ITO substrates were first cleaned by detergent, then rinsed well with ethanol and DI water and then electrodeposited in a solution of 0.1 M Zn (NO3)2·6H2O with 2% (NH4)2TiF6 at 1 mA for 30 min, at 75°C. The phase composition of the samples was characterized by X-ray powder diffraction (Philips X’pert Multipurpose X-ray Diffraction System with Cu Kα; Philips, Amsterdam, The Netherlands).