For the MWCNTs/GnPs hybrid

For the MWCNTs/GnPs hybrid materials (Figure 2d), both laminated structure of GnPs-OH and tubular structure of MWCNTs could be found. The results indicated that the MWCNTs/GnPs hybrid materials had been synthesized successfully and our chemical grafting method was appropriate. Figure 2 SEM images. (a) MWCNTs-OH. (b) GnPs-OH. (c) MWCNTs-PACl. (d)

MWCNTs/GnPs hybrid materials. More detailed evidences of microstructure of various MWCNTs nanomaterials could be supported by the TEM images in Figure 3 when compared to the morphology of various nanomaterials. As shown in Figure 3a, the NVP-BSK805 concentration surface of MWCNTs-OH was relatively FG-4592 price smooth and clean and exhibited a semitransparent appearance. In contrast, the edge of MWCNTs-PACl (Figure 3b) became substantially thickened with the edge blurred, indicating that the surface of MWCNTs was wrapped by the PACl [11]. It could be seen clearly that the MWCNTs-PACl were hanged on the surface of GnPs (Figure 3d). After those process mentioned above in the ‘Experimental’ section, the weight of samples was almost unchanged which indicated that the polymer layer was indeed covalently linked to the carbon nanotubes. Therefore, it could be confirmed that MWCNTs were assembled onto the surface of GnPs through the reaction of the hydroxyl groups of GnPs and the acyl chloride groups of PACl. Figure 3 TEM images. (a) MWCNTs-OH. (b)

MWCNTs-PACl. Vorinostat datasheet (c) GnPs-OH. (d) MWCNTs/GnPs hybrid materials. The structure analysis FTIR spectra of various MWCNTs nanomaterials were presented in Figure 4. The C-H stretch vibration of PACl PRKACG backbone was detected at 2,925 cm−1 as a broad and weak absorption peak, while the 1,759 and 1,803 cm−1 peaks were originated from characteristic C=O stretching vibration of ester and acyl chloride respectively [14, 15]. The FTIR feature in Figure 4c suggested that the PACl was attached to the surface of MWCNTs. Figure 4b showed the features of GnPs: a broad hydroxyl group-related absorption band (3,440 cm−1). In Figure 4c

and d, the peak of 1,759 cm−1 was attributed to the C=O stretching vibrations of the ester carbonyl group, which resulted from the reaction between MWCNTs-PACl and GnPs. In addition, the appearance of an intense absorption peak (C-O, 1,164cm−1) indicated the formation of ester linkage between GnPs and MWCNTs-PACl. Figure 4 FTIR spectra. (a) MWCNTs-OH. (b) GnPs-OH. (c) MWCNTs-PACl. (d) MWCNTs/GnPs hybrid materials. Figure 5 showed the Raman spectra of the samples. All spectra were excited with visible (532 nm) laser light. Raman spectroscopy is a powerful tool in investigating the crystalline, nanocrystalline, and amorphous structures of graphitic-based materials [16, 17]. The D band at approximately 1,330 cm−1 is attributed to the defects in the disorder-induced modes (or sp3-hybridized carbons), which becomes active in the presence of disorder.

Comments are closed.