In addition to this, the data suggests that ingestion of unprocessed protein together with carbohydrate during 120 min of submaximal cycling does not improve performance in a subsequent 5-min mean-power test compared to ingestion
of carbohydrate alone. This is in line with results from several other studies [2, 5, 6]. All three beverages investigated Wnt inhibitor in this study contained carbohydrate levels corresponding to intake of 60 g·h-1. This should have ensured maximal rates of exogeous carbohydrate oxidation [1]. In each of the two beverages containing protein, the protein fraction corresponded to an intake of about 15 g·h-1, increasing the overall caloric content of these beverages. Accordingly, the apparent lack of an ergogenic effect of supplying an iso-carbohydrate
beverage with protein or hydrolyzed protein suggests that protein offers no acute caloric advantage for a performing athlete. In agreement with this, the three beverages were associated with similar RER values throughout the prolonged submaximal exercise, suggesting that protein ingestion did not result in a major metabolic shift towards amino acid oxidation or fatty acid. As for the Nutripeptin™-containing beverage, this lack of a metabolic shift contrasts the hypothesized role of the supplement as a signal that provides a switch towards fatty acids. Nevertheless, NpPROCHO ingestion but not PROCHO was associated with a possible Y-27632 chemical structure ergogenic effect, despite the fact that the
two beverages isoprotein-caloric. Notably, for both of the protein-containing beverages the ingested protein seemed to be absorbed and catabolized, as evaluated from the similar increases in blood concentrations of the protein-degradation by-product BUN measured subsequent to 120 min of steady-state cycling. An interesting consequence of the correlative relation between NpPROCHO performance and athletic performance level was that the beverage resulted in lowered performance in the better athletes. As touched upon in the previous discussion this could be an effect of the specific protocol utilized in this study and the outcome TCL may have been different if the pre-exhaustive cycling phase had been longer-lasting. These results are not easy to explain based on current knowledge, especially as the PROCHO beverage did not result in a similar correlation. A speculative explanation could be a potential difference in the insulinogenic response offered by the two beverages. Previous studies have at least shown that ingestion of hydrolyzed protein is associated with a substantially greater insulinogenic response than ingestion of intact protein [27, 28]. Mechanistically, this response has been linked to hypoglycaemia, and has been linked to lowered physical performance during early phases of exercise [29].