To amplify cloned regions from bacterial colonies at CFMR, a PCR reaction was prepared as previously described with the exception that template DNA was added by placing a small
amount of a transformed bacterial colony into the reaction using a sterile 200 μL pipette tip. To amplify cloned regions at UTK, the bacterial colony was transferred to water, boiled, followed by PCR; PCR was repeated on dilutions of boiled DNA if no product was obtained. Thermocycler conditions were as follows: initial denaturing at 94 C for 10 min; 30 cycles of denaturing at 94 C for 40 s, annealing at 53 C for 40 s, and extension at 72 C for 90 s; and a final extension step of 72 C for 10 min. Following PCR the reactions were checked for product, treated with EXO/SAP and sequenced as previously described. Five clones per collection were sequenced. Consensus sequences Consensus EX 527 sequences were produced using multiple sequences in Sequencher 4.8. Self-chimeric LSU sequences (containing out-of-sequence partial forward and back reads) were used to correct bp in the full sequences by segmenting them at splices and aligning them to reference sequences together with full sequences. Phylogenetic analyses
Three sets of alignments were constructed from the resulting sequences. The first set consisted selleck products of the nuclear ribosomal large subunit (LSU, 25S, D1, D2 and D3), and PhyML analysis selleck screening library rooted with Typhula phacorrhiza. The second set comprised four partially overlapping data sets from the Hygrophoraceae constructed from the nuclear ribosomal internal transcribed spacer (ITS) region (ITS 1–2 and 5.8S) together with the LSU and an outgroup based on phylogenies in Binder et al. (2010), Matheny et al. (2006) and the LSU analysis above; each data set was aligned separately all to minimize loss of data from the ITS, and ML analysis was used. Outgroups were Hygroaster albellus for Group 1 (Hygrocybe s.s.); Hygrophorus eburneus for Group 2 (Neohygrocybe, Porpolomopsis, Gliophorus, Gloioxanthomyces, Haasiella, Humidicutis, Chromosera and Chrysomphalina); Neohygrocybe ingrata
for Group 3 (Hygrophorus ss, Neohygrocybe, Chromosera, Chrysomphalina, Arrhenia, Dictyonema, Lichenomphalia and Pseudoarmillariella); Macrotyphula fistulosa for Group 4 (Ampullocliticybe, Cantharocybe and Cuphophyllus). Sequences were initially aligned using the default settings in MAFFT version 6 (Katoh and Toh 2008) and then manually aligned using SeAl version 2.0a11 (Rambaut 2002). Ambiguously aligned positions and sequence ends were pruned from the datasets before running maximum likelihood (ML) analyses in GARLI v0.951 (Zwickl 2006) using a general time reversible model of nucleotide substitution with a gamma distributed rate heterogeneity and a proportion of invariant sites (GTR + G γ + I). ML searches were repeated three times for each dataset.