Under the same conditions, an anodic potential equal to 700

Under the same conditions, an anodic potential equal to 700

FG-4592 price mVsce was applied to each fragment during a period of 360 minutes. The renewing of the solution adjacent to the fragment was performed by using a 10-mL disposable syringe according to the current register profile. The embedded fragments were submitted to radiographic analysis before and after the tests. The radiographs were digitalized, and the fragments’ lengths were measured by using the Image-Pro Plus software (version 6.0; Media Cybernetics, Silver Spring, MD). The lengths measured before and after the polarization tests were compared as a means to quantify the dissolution process (t test, P < .05). Figure 2 presents the current values registered during the polarizations of fragments from groups D14, D6, and D3. The polarization of fragments from group D14 resulted in oscillation of current values within the range of 1.75–2.25 mA during the entire test. During the tests

of group D6, the current values remained stable in 1.40 mA during the initial 30 minutes and oscillated within the range of 0.00–1.50 mA during the last 20 minutes. During the polarization of fragments from group D3, current values oscillated within the range of 0.00–1.50 mA during the initial 15 minutes and within the range of 0.00–1.00 mA during the other 35 minutes. The total electrical charge values generated during the tests evidence a statistical difference among the 3 groups of fragments Screening Library (ANOVA, P < .05). The larger is the diameter of the cross section of the exposed surface, the higher is the total value of electrical charge, which is directly related to the metal dissolution.

Fragment samples from groups D14, D6, and D3 presented mean values of the total electrical charge of 5.31 ± 0.56 mA, 3.06 ± 0.14 mA, and 1.88 ± 0.07 mA, respectively. During the 360-minute polarization of fragments from group D3, the current values oscillated within the range of 0.00–1.50 mA up to 120 minutes of the test, where the current peaks showed a gradual reduction. Then the current values oscillated within the range find more of 0.00–0.30 mA until the end of the test (Fig. 2). The total electrical charges generated during the 360-minute polarization tests presented mean value of 5.67 ± 0.48 mA. The radiographic images obtained before and after the tests showed a reduction of the fragment length as a result of polarization (Fig. 3). This reduction was statistically significant, considering that the fragments presented an original length of 3.04 ± 0.04 mm and a final length of 1.31 ± 0.22 mm (t test, P < .05). The concept of retrieval of fractured instruments by an electrochemical process is based on the dissolution of a metal alloy in aqueous environments, and it requires the presence of at least 2 electrodes and a continuous electrolyte among them.

Comments are closed.